1,968 research outputs found

    A Survey for EHB Stars in the Galactic Bulge

    Full text link
    We present a progress report on an extensive survey to find and characterize all types of blue horizontal-branch stars in the nuclear bulge of the Galaxy. We have obtained wide, shallow imaging in UBV of ~12 square degrees in the bulge, with follow-up spectroscopy for radial velocities and metal abundance determinations. We have discovered a number of metal-rich blue HB stars, whose presence in the bulge is expected by the interpretation of the extragalactic ultraviolet excess. Very deep images have been obtained in UBV and SDSS u along the bulge minor axis, which reveal a significant number of EHB candidates fainter than B = 19, i.e., with the same absolute magnitudes as EHB stars in several globular clusters.Comment: To appear in "Extreme Horizontal Branch Stars and Related Objects", Astrophysics and Space Science, Kluwer Academic Publishers, proceedings of the meeting held in Keele, UK, June 16-20, 200

    The Zero Point of Extinction Toward Baade's Window

    Get PDF
    We measure the zero point of the Stanek (1996) extinction map by comparing the observed (V-K) colors of 206 K giant stars with their intrinsic (V-K)_0 colors as derived from their H\beta indices. We find that the zero point of the Stanek map should be changed by \Delta A_V = -0.10 +/- 0.06 mag, obtaining as a bonus a three-fold reduction of the previous statistical error. The most direct way to test for systematic errors in this determination would be to conduct a parallel measurement based on the (V-K) colors of RR Lyraes (type ab).Comment: 10 pages, 1 figur

    Physiological evidence for plasticity in glycolate/glycerate transport during photorespiration

    Get PDF
    © 2016, The Author(s). Photorespiration recycles fixed carbon following the oxygenation reaction of Ribulose, 1–5, carboxylase oxygenase (Rubisco). The recycling of photorespiratory C2 to C3 intermediates is not perfectly efficient and reduces photosynthesis in C3 plants. Recently, a plastidic glycolate/glycerate transporter (PLGG1) in photorespiration was identified in Arabidopsis thaliana, but it is not known how critical this transporter is for maintaining photorespiratory efficiency. We examined a mutant deficient in PLGG1 (plgg1-1) using modeling, gas exchange, and Rubisco biochemistry. Under low light (under 65 μmol m−2 s−1 PAR), there was no difference in the quantum efficiency of CO2 assimilation or in the photorespiratory CO2 compensation point of plgg1-1, indicating that photorespiration proceeded with wild-type efficiency under sub-saturating light irradiances. Under saturating light irradiance (1200 μmol m−2 s−1 PAR), plgg1-1 showed decreased CO2 assimilation that was explained by decreases in the maximum rate of Rubisco carboxylation and photosynthetic linear electron transport. Decreased rates of Rubisco carboxylation resulted from probable decreases in the Rubisco activation state. These results suggest that glycolate/glycerate transport during photorespiration can proceed in moderate rates through an alternative transport process with wild-type efficiencies. These findings also suggest that decreases in net CO2 assimilation that occur due to disruption to photorespiration can occur by decreases in Rubisco activity and not necessarily decreases in the recycling efficiency of photorespiration

    Hot Horizontal Branch Stars in the Galactic Bulge. I

    Full text link
    We present the first results of a survey of blue horizontal branch (BHB) stars in the Galactic bulge. 164 candidates with 15 < V < 17.5 in a field 7.5deg from the Galactic Center were observed in the blue at 2.4A FWHM resolution with the AAT 2dF spectrograph. Radial velocities were measured for all stars. For stars with strong Balmer lines, their profiles were matched to theoretical spectrum calculations to determine stellar temperature Teff and gravity log g; matches to metal lines yielded abundances. CTIO UBV photometry then gave the reddening and distance to each hot star. Reddening was found to be highly variable, with E(B-V) from 0.0 to 0.55 around a mean of 0.28. Forty-seven BHB candidates were identified with Teff >= 7250K, of which seven have the gravities of young stars, three are ambiguous, and 37 are HB stars. They span a wide metallicity range, from solar to 1/300 solar. The warmer BHB's are more metal-poor and loosely concentrated towards the Galactic center, while the cooler ones are of somewhat higher metallicity and closer to the center. Their red B-V colors overlap main-sequence stars, but the U-B vs. B-V diagram separates them until E(B-V) > 0.5. We detect two cool solar-metallicity HB stars in the bulge of our own Galaxy, the first such stars known. Still elusive are their hot counterparts, the metal-rich sdB/O stars causing excess UV light in metal-rich galaxies; they have V ~ 20.5 in the Bulge.Comment: 29 pages, 4 figures (the third with 4 panels, the fourth with 2 panels). To appear in the Astrophysical Journal v571n1, Jan. 20, 2000. Abstract is shortened here, and figures compresse

    Bile acid sodium symporter BASS6 can transport glycolate and is involved in photorespiratory metabolism in Arabidopsis thaliana

    Get PDF
    © 2017, American Society of Plant Biologists. All rights reserved. Photorespiration is an energy-intensive process that recycles 2-phosphoglycolate, a toxic product of the Rubisco oxygenation reaction. The photorespiratory pathway is highly compartmentalized, involving the chloroplast, peroxisome, cytosol, and mitochondria. Though the soluble enzymes involved in photorespiration are well characterized, very few membrane transporters involved in photorespiration have been identified to date. In this work, Arabidopsis thaliana plants containing a T-DNA disruption of the bile acid sodium symporter BASS6 show decreased photosynthesis and slower growth under ambient, but not elevated CO2. Exogenous expression of BASS6 complemented this photorespiration mutant phenotype. In addition, metabolite analysis and genetic complementation of glycolate transport in yeast showed that BASS6 was capable of glycolate transport. This is consistent with its involvement in the photorespiratory export of glycolate from Arabidopsis chloroplasts. An Arabidopsis double knockout line of both BASS6 and the glycolate/glycerate transporter PLGG1 (bass6, plgg1) showed an additive growth defect, an increase in glycolate accumulation, and reductions in photosynthetic rates compared with either single mutant. Our data indicate that BASS6 and PLGG1 partner in glycolate export from the chloroplast, whereas PLGG1 alone accounts for the import of glycerate. BASS6 and PLGG1 therefore balance the export of two glycolate molecules with the import of one glycerate molecule during photorespiration

    Laser-powered lunar base

    Get PDF
    The objective was to compare a nuclear reactor-driven Sterling engine lunar base power source to a laser-to-electric converter with orbiting laser power station, each providing 1 MW of electricity to the lunar base. The comparison was made on the basis of total mass required in low-Earth-orbit for each system. This total mass includes transportation mass required to place systems in low-lunar orbit or on the lunar surface. The nuclear reactor with Sterling engines is considered the reference mission for lunar base power and is described first. The details of the laser-to-electric converter and mass are discussed. The next two solar-driven high-power laser concepts, the diode array laser or the iodine laser system, are discussed with associated masses in low-lunar-orbit. Finally, the payoff for laser-power beaming is summarized
    • …
    corecore